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1. Definitions and the main result

A geometric Kekulé structure is a normal structure as usually drawn to
represent the two resonant structures of benzene, the three limiting structures
of naphthalene, etc. As indicated in previous papers [1–4], an algebraic Ke-
kulé structure inscribes in every possible Kekulé structure for a polycyclic ben-
zenoid the count of π -electrons belonging to each ring by considering that
a double bond shared by two condensed rings contributes by one π -electron.
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It was proved earlier [5] that catafusenes have a one-to-one correspondence
between geometric and algebraic Kekulé structures, but that perifusenes and
coronafusenes have exceptions from this rule. The simplest definitions of catafu-
senes, perifusenes and coronafusenes are based on their dualist (former name:
characteristic) graphs [6,7]. This paper describes such exceptions in detail.

Denote by V (G) the set of vertices of a connected graph G and by E(G)

the set of edges of G. Let S be a connected subgraph of G. Denote by G − S

the graph induced by the set of vertices V (G)−V (S). By E(H) denote the set of
edges of a benzenoid ring H ; by E1(H) the set of edges of hexagon H that are
shared with another hexagon; by E2(H) the set of edges of H that belong only
to hexagon H and by χ(K, H) the number of π -electrons that belong to hexa-
gon H considering geometric Kekulé structure K. Denote the symmetric differ-
ence of the sets S1 and S2 (i.e., the set of elements that are contained in exactly
one of the sets S1 and S2) by S1�S2. For a geometric Kekulé structure K, denote
by D(K) the set of double bonds.

Our main result reads

Theorem. A benzenoid system G does not have one-to-one correspondence
between algebraic and geometric Kekulé structures if and only if it contains at
least one graph C each of whose connected components is a cycle and such that
edges of C can be divided in two classes C1 and C2 such that

(1) neither of classes C1 and C2 contains two consecutive edges of any cycle
in C. In other words, C is a conjugated circuit.

(2) G − V (C) has a Kekulé structure.

(3) For each hexagon H in the benzenoid G, we have

|E1(H) ∩ C1| + 2 · |E2(H) ∩ C1| = |E1(H) ∩ C2| + 2 · |E2(H) ∩ C2| .

Proof. First, suppose that benzenoid graph G does not have one-to-one
correspondence between geometric Kekulé structures and algebraic Kekulé struc-
tures. Denote by A the algebraic Kekulé structure that corresponds to both
Kekulé structures K1 and K2. Note that each vertex in the subgraph C of the
graph G with the set of edges D(K1)�D(K2) has degree 0 or 2 (and at least
one vertex has degree 2). Therefore C is the union of disjoint cycles. Denote
C1 = C ∩ D(K1) and C2 = C ∩ D(K2). Note that neither of classes C1 and C2

contains two consecutive edges of any cycle in C. Also, note that the set of edges
K1/C1 represents a Kekulé structure in G/C. It remains to prove (2). Let H be
an arbitrary hexagon. Denote D1 = D(K1) and D2 = D(K2). Since K1 and K2

correspond to the same algebraic Kekulé structure, it follows that

|E1(H) ∩ D1| + 2 · |E2(H) ∩ D1| = |E1(H) ∩ D2| + 2 · |E2(H) ∩ D2| .
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From the last relationship, it follows that

|E1(H) ∩ (D1 ∩ D2)| + 2 · |E2(H) ∩ (D1 ∩ D2)| + |E1(H) ∩ (D1/D2)|
+2 · |E2(H) ∩ (D1/D2)|

= |E1(H) ∩ (D1 ∩ D2)| + 2 · |E2(H) ∩ (D1 ∩ D2)| + |E1(H) ∩ (D2/D1)|
+2 · |E2(H) ∩ (D2/D1)| .

From here, it follows that

|E1(H) ∩ (D1/D2)| + 2 · |E2(H) ∩ (D1/D2)| = |E1(H) ∩ (D2/D1)|
+2 · |E2(H) ∩ (D2/D1)|

or equivalently that

|E1(H) ∩ C1| + 2 · |E2(H) ∩ C1| = |E1(H) ∩ C2| + 2 · |E2(H) ∩ C2| .

Now, let us prove the opposite implication. Let C be the graph with properties
required in the theorem. Let K be an arbitrary Kekulé structure of the graph
G − V (C). Note that K ∪ C1 and K ∪ C2 are two different geometric Kekulé
structures of G. Let us prove that these two structures correspond to the same
algebraic Kekulé structure. Let H be an arbitrary hexagon. We have

|E1(H) ∩ C1| + 2 · |E2(H) ∩ C1| = |E1(H) ∩ C2| + 2 · |E2(H) ∩ C2| .

It follows that

|E1(H) ∩ C1| + 2 · |E2(H) ∩ C1| + |E1(H) ∩ K| + 2 · |E2(H) ∩ K|
= |E1(H) ∩ C2| + 2 · |E2(H) ∩ C2| + |E1(H) ∩ K| + 2 · |E2(H) ∩ K| .

Therefore,

|E1(H) ∩ (C1 ∪ K)| + 2 · |E2(H) ∩ (C1 ∪ K)| = |E1(H) ∩ (C2 ∪ K)|
+2 · |E2(H) ∩ (C2 ∪ K)| .

Therefrom, χ(C1 ∪ K, H) = χ(C2 ∪ K, H), which proves the claim.

We now illustrate the theorem with examples.

Example 1. Here, we give an example of a benzenoid graph (anthracene) with
one-to-one correspondence between algebraic and geometric Kekulé structures,
as for all catafusenes.
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Example 2. Now, we give an example of another benzenoid graph (pyrene) which
is peri-condensed and does not present a one-to-one correspondence between
algebraic and geometric Kekulé structures: the outline of hexagons on the left-
hand side with the algebraic count of π -electrons corresponds to two geometric
Kekulé structures on the right.
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Of course, note that this graph has to have a subgraph described in our the-
orem. There are two such subgraphs presented in the following figure:

Example 3. If one adds, on each side of the horizontal naphthalene fragment in
the above formula of pyrene, any catafusene (benzene, naphthalene, etc.), then
one obtains an infinity of pairs of geometric perifusene Kekulé structures with
one and the same algebraic Kekulé structure. We will start by adding one ben-
zenoid ring on each side.
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All these examples may be symbolized in condensed form by the following
notation for the Kekulé structures:

   5        5        5        5

3    3 5   2   2   5 5   2   1   6 6   1   1   6

   5         5        5        5

Example 4. In a similar manner, by adding on both sides of the two pyrene
Kekulé structures from Example 2 naphthalene systems, one will obtain the fol-
lowing Kekulé structures that illustrate the present theorem:

 5   5  5

4   5   2   2   5   4 5   5   1   1   5   5 6   4   1   1   4   6

 5   5  5

Example 5. Just as in the case of the system displayed in the middle formulas of
Example 3 with non-symmetrical geometric Kekulé structures on the two sides
of the two pyrene benzenoid rings, one obtains the following Kekulé structures
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that illustrate the present theorem; the first two are symmetrical, and the third
one is not.

 5  5  5

6   4   1   2   5   4 6   4   1   1   5   5 2   5   4   1   4   6

 5  5  5

Example 6. On adding on both sides of the two pyrene Kekulé structures from
Example 2 anthracene systems, it is possible to obtain the following Kekulé
structures that illustrate the present theorem, as well as less symmetrical ones
that are not shown:

      5       5      5

6   4   4   1   1   4  4   6 5   5   4   1   1   4   5   5 4   5   5   1   1   5   5   4

 5       5       5

Example 7. As a last variation on the pyrene theme, the following benzenoid
combines all but one of the possible partitions of the π -electrons to illustrate the
theorem (only zero is absent).
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Example 8. Let us observe the following graph, which is again a perifusene (bis-
perylene):

In this graph, we have a larger number of graphs with the properties described
in the theorem as presented by the following figure:

Obviously, this benzenoid does not have one-to-one correspondence between
algebraic and geometric Kekulé structures as demonstrated by the following
four geometric Kekulé structures corresponding to one and the same algebraic
Kekulé structure.
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Example 9. The last example is a coronoid (kekulene). Two of its geometric
Kekulé structures correspond to one and the same algebraic Kekulé structure.
These have the lowest degree of freedom among all geometric Kekulé structures
of kekulene.
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It is not difficult to realize that any coronoid (such as those examined in
Part 2 of the present series, including the following two fibonacenic coronoids),
have such a pair of geometric Kekulé structures with one outer and inner con-
jugated circuit yielding an algebraic Kekulé structure that has for each ring a
partition of four π -electrons, just as in kekulene. However, for fibonacenic cor-
onoids (where there is no anthracenic subgraph) there is third geometric Kekulé
structure whose rings have all the same partition with four π -electrons, namely
the so-called Fries structure in which every benzenoid ring has a π -electron sex-
tet, sharing two electron pairs with adjacent rings.
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It is easy to see that for kekulene and similar coronoids, the benzenoid ring
in the middle of the linear portion satisfies the condition of being a C-type ring.
For fibonacenic coronoids, any single benzenoid ring satisfies that condition, and
all alternate rings together satisfy that condition.

2. Conclusion

The necessary and sufficient conditions for an algebraic Kekulé structure
to correspond to two or more geometric Kekulé structures were described and
exemplified for perifusenes and coronafusenes.
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